Rapid amyloid fiber formation from the fast-folding WW domain FBP28.

نویسندگان

  • Neil Ferguson
  • John Berriman
  • Miriana Petrovich
  • Timothy D Sharpe
  • John T Finch
  • Alan R Fersht
چکیده

The WW domains are small proteins that contain a three-stranded, antiparallel beta-sheet. The 40-residue murine FBP28 WW domain rapidly formed twirling ribbon-like fibrils at physiological temperature and pH, with morphology typical of amyloid fibrils. These ribbons were unusually wide and well ordered, making them highly suitable for structural studies. Their x-ray and electron-diffraction patterns displayed the characteristic amyloid fiber 0.47-nm reflection of the cross-beta diffraction signature. Both conventional and electron cryomicroscopy showed clearly that the ribbons were composed of many 2.5-nm-wide subfilaments that ran parallel to the long axis of the fiber. There was a region of lower density along the center of each filament. Lateral association of these filaments generated twisted, often interlinked, sheets up to 40 nm wide and many microns in length. The pitch of the helix varied from 60 to 320 nm, depending on the width of the ribbon. The wild-type FBP28 fibers were formed under conditions in which multiexponential folding kinetics is observed in other studies and which was attributed to a change in the mechanism of folding. It is more likely that those phases result from initial events in the off-pathway aggregation observed here.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ensemble folding kinetics of the FBP28 WW domain revealed by an all-atom Monte Carlo simulation in a knowledge-based potential.

In this work, we apply a detailed all-atom model with a transferable knowledge-based potential to study the folding kinetics of Formin-Binding protein, FBP28, which is a canonical three-stranded β-sheet WW domain. Replica exchange Monte Carlo simulations starting from random coils find native-like (Cα RMSD of 2.68 Å) lowest energy structure. We also study the folding kinetics of FBP28 WW domain...

متن کامل

Preventing fibril formation of a protein by selective mutation.

The origins of formation of an intermediate state involved in amyloid formation and ways to prevent it are illustrated with the example of the Formin binding protein 28 (FBP28) WW domain, which folds with biphasic kinetics. Molecular dynamics of protein folding trajectories are used to examine local and global motions and the time dependence of formation of contacts between C(α)s and C(β)s of s...

متن کامل

WW Domain Folding Complexity Revealed by Infrared Spectroscopy

Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the pr...

متن کامل

Integrating folding kinetics and protein function: biphasic kinetics and dual binding specificity in a WW domain.

Because of the association of beta-sheet formation with the initiation and propagation of amyloid diseases, model systems have been sought to further our understanding of this process. WW domains have been proposed as one such model system. Whereas the folding of the WW domains from human Yes-associated protein (YAP) and Pin have been shown to obey single-exponential kinetics, the folding of th...

متن کامل

Structure-function-folding relationship in a WW domain.

Protein folding barriers result from a combination of factors including unavoidable energetic frustration from nonnative interactions, natural variation and selection of the amino acid sequence for function, and/or selection pressure against aggregation. The rate-limiting step for human Pin1 WW domain folding is the formation of the loop 1 substructure. The native conformation of this six-resid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 17  شماره 

صفحات  -

تاریخ انتشار 2003